Totally embedded hybrid thin films of carbon nanotubes and silver nanowires as flat homogenous flexible transparent conductors
نویسندگان
چکیده
There is a great need for viable alternatives to today's transparent conductive film using largely indium tin oxide. We report the fabrication of a new type of flexible transparent conductive film using silver nanowires (AgNW) and single-walled carbon nanotube (SWCNT) networks which are fully embedded in a UV curable resin substrate. The hybrid SWCNTs-AgNWs film is relatively flat so that the RMS roughness of the top surface of the film is 3 nm. Addition of SWCNTs networks make the film resistance uniform; without SWCNTs, sheet resistance of the surface composed of just AgNWs in resin varies from 20 Ω/sq to 107 Ω/sq. With addition of SWCNTs embedded in the resin, sheet resistance of the hybrid film is 29 ± 5 Ω/sq and uniform across the 47 mm diameter film discs; further, the optimized film has 85% transparency. Our lamination-transfer UV process doesn't need solvent for sacrificial substrate removal and leads to good mechanical interlocking of the nano-material networks. Additionally, electrochemical study of the film for supercapacitors application showed an impressive 10 times higher current in cyclic voltammograms compared to the control without SWCNTs. Our fabrication method is simple, cost effective and enables the large-scale fabrication of flat and flexible transparent conductive films.
منابع مشابه
High performance of carbon nanotubes/silver nanowires-PET hybrid flexible transparent conductive films via facile pressing-transfer technique
To obtain low sheet resistance, high optical transmittance, small open spaces in conductive networks, and enhanced adhesion of flexible transparent conductive films, a carbon nanotube (CNT)/silver nanowire (AgNW)-PET hybrid film was fabricated by mechanical pressing-transfer process at room temperature. The morphology and structure were characterized by scanning electron microscope (SEM) and at...
متن کاملSolution-Processed Flexible Transparent Conductors Composed of Silver Nanowire Networks Embedded in Indium Tin Oxide Nanoparticle Matrices
Although silver nanowire meshes have already demonstrated sheet resistance and optical transmittance comparable to those of sputter-deposited indium tin oxide thin films, other critical issues including surface morphology, mechanical adhesion and flexibility have to be addressed before widely employing silver nanowire networks as transparent conductors in optoelectronic devices. Here, we demons...
متن کاملHybrid transparent electrodes of silver nanowires and carbon nanotubes: a low-temperature solution process
Hybrid transparent electrodes with silver nanowires (AgNWs) and single-walled carbon nanotubes (SWCNTs) were fabricated on plastic films by a low-temperature solution process. The hybrid transparent electrodes exhibited a sheet resistance of 29.2 Ω/sq with a transparency of 80% when 6 wt.% of SWCNTs was mixed with AgNWs. This sheet resistance was less than one-fourth that of the AgNW transparen...
متن کاملHigh-yield and rapid synthesis of ultrathin silver nanowires for low-haze transparent conductors
Transparent conducting electrodes (TCEs) are essential components in various optoelectronic devices such as solar cells, organic light emitting diodes, liquid crystal displays, touch screens, and smart windows. Nowadays, the most common conductive material used in TCEs is indium tin oxide (ITO). However, poor mechanical exibility, limited supply, high cost, and the vacuum forming process of th...
متن کاملEnvironmental and economic assessment of ITO-free electrodes for organic solar cells
The use of Indium–Tin Oxide (ITO) as a transparent conductor in organic photovoltaic (OPV) devices has been shown to present a bottleneck for the technology due to the use of the rare metal Indium and also the energy intensive manufacturing processes required and subsequent high economic cost. This study discusses some of the alternative materials, which are being considered for use as transpar...
متن کامل